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  C, C++, F2003 compilers 

  Optimizing, Vectorizing, Parallelizing 

  Graphical parallel debugger, profiler 

  AMD & Intel, 32 & 64-bit, SSE & AVX 

  PGI Unified Binary™ technology 

  Linux, MacOS, Windows 

  Visual Studio integration on Windows 

  CUDA Fortran for NVIDIA GPUs 

  CUDA C for both X86 and NVIDIA 

  PGI Accelerator™ Programming Model 
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PGI Milestones 

•  1989 PGI Formed 
•  1991 Pipelining i860 

Compiler 
•  Intel Paragon support 
•  1994 Parallel i860 Compiler 
•  1996 ASCI Red TFLOPS 

Compiler 
•  1997 Linux/x86 Compiler 
•  1998 OpenMP for Linux/x86 
•  1999 SSE/SIMD Auto-

vectorization 
•  2001 VLIW ST100 Compiler 

•  2003 64-bit Linux/x86 
Compiler 

•  2004 ASCI Red Storm 
Compiler 

•  2005 PGI Unified Binary 
•  2006 PGI Visual Fortran 
•  2007 64-bit MacOS Compiler 
•  2008 PGI Accelerator 

Compiler 
•  2009 CUDA Fortran 
•  2011 CUDA C for x64 and 

MIC 



PGI® 2011 Features 
  PGI Accelerator™ Programming Model 

  High-level, Portable, Directive-based Fortran & C extensions (no C++, yet) 
  Supported on NVIDIA CUDA GPUs 

  PGI CUDA Fortran 
  Extended PGI Fortran, co-defined by PGI and NVIDIA 
  Lower-level explicit NVIDIA CUDA GPU programming 

  PGI CUDA C for x64 and MIC 
  Demonstration of CUDA C for x64 at SC 2010 in New Orleans 
  Mixing of CUDA C, CUDA Fortran and PGI Accelerator directives 

  Compiler Enhancements 
  F2003 – object oriented features 
  Latest EDG 4.1 C++ front-end – more g++/VC++ compatible, zero cost 

exception handling (-zc_eh) 
  AVX code generation, code generator tuning 

  PGPROF Enhancements 
  Uniform performance profiling across Linux, MacOS and Windows 
  x64+GPU performance profiling 
  Updated Graphical User Interface (GUI) 



PGI is the default compiler on the XT5 systems. 

Cray supplies wrappers to all of the compilers on the system so that the 
Fortran compiler is always invoked as “ftn”, the C compiler as “cc”, and C
++ as “CC” regardless of the actual compile vendor being used. 

> module list

  pgi/11.2.0

> ftn -V foo.f -o foo

  pgfortran 11.2-0 64-bit target on Linux -tp barcelona-64

Compiling codes with PGI 

Or you can call the compiler directly with “pgfortran” but you won’t get 
the Cray library wrappers for use in the XT5 system 



On the Cray, to change the version of the PGI compiler, you need to switch 
modules: 

> module switch pgi/11.2.0 pgi/10.2.0

> ftn -V foo.f -o foo

  pgf90 10.2-0 64-bit target on Linux -tp barcelona

On your workstation, if you have multiple versions of PGI installed, you can 
invoke a different version of the compiler through the compile driver: 

> pgfortran  -V10.2 hello.f -o hello  

  pgfortran 10.2-0  64-bit target on Linux -tp istanbul-64

Using a different version of PGI 



The PGI compile driver by default compiles for the processor on which the 
compilation takes place.  The driver allows you to easily cross compile for 
another target processor:   

> pgfortran -V foo.f -o foo -tp istanbul-64

  pgfortran 11.2-0 64-bit target on Linux -tp istanbul-64

At the request of Cray users at ORNL - new to 11.2 – you can set the target 
processor in your ~/.mypgirc or the siterc file.  This can then be overridden 
with the –tp flag on the command line  (Cray still needs to change compile scrips): 

set PREOPTIONS=-tp=barcelona-64 

Then override on the commandline: 

> ftn -V foo.o -o foo -tp istanbul-64

Changing target processors 

pgfortran 11.2-0 64-bit target on Linux -tp istanbul-64 



Why change the target processor? 

You intend to run on a processor different then the default.  (On JaguarPF, 
you are actually cross compiling for the istanbul-64 processor) 

The target system has more then one CPU type on it.   Suppose JaguarEF 
contains both AMD and Intel CPUs. 

> ftn –V –tp sandybridge-64,bulldozer-64 

pgfortran 11.2-0 64-bit target on Linux -tp sandybridge-64,bulldozer-64 

The creates a PGI Unified Binary which contains optimized code for the 
sandybridge chip and optimized code for the bulldozer chip in the same 
binary.  At run time, the system determines the processor it is running on 
and selects that code branch, thus allowing a single executable to run on an 
heterogeneous target architecture. 

Changing target processors 



OK, OK  – I have the best compilers on the world’s best computer.  What 
should I do to get my code compiled and start computing? 

I’m in a hurry – how do I start? 



> ftn -fast foo.f -o foo 

Invoking the compiler with the –fast (or –fastsse) flag sets common 
optimizations which include:   

 -O2 
 -Munroll=c:1 
 -Mnoframe               (gives the compiler another register) 
 -Mlre 
 -Mautoinline 
 -Mvect=sse                <= this is the vectorizer 
 -Mscalarsse 
 -Mcache_align 
 -Mflushz 
 -Mpre   

Recommended optimization 



Yes!   PGI recommends that you use the –Minfo=ccff flag for all 
compiles.   

-Minfo instructs the compiler to print out informative messages during the 
compilation stage.   

-Minfo=ccff instructs the compiler to also imbed these informative 
messages in the executable itself.  When you use the profiler, you can then 
coordinate performance information with source code lines and the 
compiler messages emitted when compiling that line of code. 

Can PGI help profile my code? 



Cray provides some excellent tools for profiling using hardware counters. 

PGI also provides some excellent tools for profiling of code.  The simplest 
method is to use pgcollect.  No special build process is needed, although 
compiling with –Minfo=ccff may provide useful feedback.  This imbeds the 
–Minfo messages into the executable which can then be viewed with the 
performance profile. 

Run your code as: 

> pgcollect a.out

Then view the results with the GUI tool - pgprof 

> pgprof -exe a.out

Profiling code 



To get a general profile for an MPI code, you may wish to just profile 
one of the MPI processes.  Instead of launching the executable via mpiexec, 
launch a script  which launches the executable instead:  

 > mpiexec -np 2000 ./doit  

The “doit” script for code compiled and linked with MPICH2 might look like 
the following:  

#!/bin/csh  

if ($PMI_RANK == 0) then  
   pgcollect ./test  
else  
  ./test  
endif  

After the run is complete, there will be only one pgprof.out file which can be 
viewed using:  
>  pgprof -exe ./test pgprof.out  

Profiling code 



Yes! The PGI Fortran 11.0 compiler supports Fortran 2003. 

Fortran 2003 requires that the Fortran STOP message signal all IEEE 
exceptions. 

Be default Cray will disable to capability so you don’t get messages from 
each and every MPI process.  (export NO_STOP_MESSAGE=1) 

To re-enable it:  unset NO_STOP_MESSAGE 

You will almost always see: 

Warning: ieee_inexact is signaling  

Of more concern are other messages like: 

Warning: ieee_divide_by_zero is signaling  

Can the runtime help catch errors? 



Scalar code produces one result for each assembly language instruction 

Vector code produces multiple results – depending on the vector length of 
the target processor – for each assembly language instruction. 

Processor   32 bit vector length            64 bit vector length 

Barcelona    4     2 

Istanbul     4     2 

Bulldozer    8     4 

Sandybridge    8     4 

MIC     16     8 

NextGen    32     16 

Scalar, vector – what’s the difference? 



Vectorization is the key to getting the best performance out of floating point 
intense codes. Current processors are capable of operating on 128 bits at a 
time.  This means they can do 2 – double precision operations or 4 – single 
precision operations at the same time – as long as those operations can all be 
described by a single instruction (i.e. a vector operation). 

AVX – coming by the end of the year, increases this to 256 bit wide units 

The vectorizer performs the following operations: 
 Loop interchange and loop splitting 
 Loop fusion 
 Memory-hierarchy (cache tiling) optimizations 
 Generation of SSE instructions and prefetch instructions 
 Loop peeling to maximize vector alignment 
 Alternate code generation 

Basic levels of vector optimization 



There are several common coding issues that may prevent vectorization.  
The programmer may have enough knowledge to provide additional 
information to the compiler to work around these issues. 

In C and C++ the compiler may not have enough information about the 
pointers passed into a subroutine to be able to determine that those pointers 
don’t overlap.  (-Msafeptr option or pragma or restrict keyword) 

Function calls can be inlined to allow vectorization (-Minline) 

Constants may be of the wrong type (-Mfcon) 

Loops may be too long or too short.  In both cases, additional options to the 
vectorizer may be successful in generating vector code. 

Common impediments to vector 
optimization 
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-Msafeptr Option and Pragma 

–M[no]safeptr[=all | arg | auto | dummy | local | static | global] 

all   All pointers are safe 

arg   Argument pointers are safe 

local   local pointers are safe 

static   static local pointers are safe 

global   global pointers are safe 

#pragma [scope] [no]safeptr={arg | local | global | static | all},… 

Where scope is global, routine or loop 



> ftn  foo.f -o foo 

Invoking the compiler with no flags for optimization will set the scalar  
optimization level to 1 if –g is not specified. 

> ftn -g foo.f -o foo

Invoking the compiler with no flags for optimization will set the scalar 
optimization level to 0 if –g is specified.

> ftn -O foo.o -o foo 

Invoking the compiler with the -O flag for optimization will set the scalar 
optimization level to 2 regardless of whether –g is also specified. 

 Optimization levels O0 through O4 perform increasing aggressive scalar 
optimizations

Basic levels of scalar optimization 



If you are just starting with a new code, we suggest that you try a short run 
of the code with optimization level –O2. 

If the answers look good, then try the same run with the –fast flag. 

If the answers are the same as the first run, use –fast as the basis for further 
optimizations.  If the answers differ, try turning of optimizations one at a 
time until you find the optimization that is causing the difference.  You can 
then track down in your code where that difference occurs and determine if 
it can be fixed, or if the optimization needs to be left turned off. 

Which level of optimization to start? 



Optimization flags are processed on the command line in the order in which 
they occur.  For example - to turn on all –fast optimizations except loop 
redundant elimination: 

> ftn -fast -Mnolre foo.o -o foo 

Most optimizations can be turned on with the syntax –Moptimization 

Most optimizations can be turned off with the syntax -Mnooptimization 

Turning off optimizations 



Optimizations and debugging don’t always go hand in hand, however...   

> ftn -fast -gopt foo.f -o foo

-gopt inserts debugging information without disabling optimizations.  It is 
often helpful for tracking down a code bug that only appears in optimized 
code, or a bug that occurs far enough into a code that running the code with 
no optimizations takes a painful amount of time. 

Optimizations and debugging 



Generating tracebacks 
Linux uses the backtrace system call to create the stacktrace  when a fault or error 
occurs.  The only requirement is to link with the -Meh_frame option:  
 > pgfortran -Meh_frame -o x x.f90  

Then before running the program, the following environment variable is set as 
follows:  

> export PGI_TERM=trace  



Generating tracebacks 
Here is a sample traceback from within the PGI runtime. 
(An attempt to deallocate an allocatable array more than one time):  
0: DEALLOCATE: memory at (nil) not allocated  
 ./x(__hpf_abort+0x7d) [0x40bb8d]  
 ./x(__hpf_dealloc+0xeb) [0x40b57b]  
 ./x(MAIN_+0x217) [0x408177]  
 ./x(main+0x40) [0x407f40]  
 /lib64/libc.so.6(__libc_start_main+0xf4) [0x2b877285e154]  
 ./x [0x407e69]  



Here is a sample traceback from a SEGV in user code:  

Error: segmentation violation, address not mapped to object  
  rax 0000000005f45908, rbx 0000000000000001, rcx 00000000000187f9  
  rdx 00000000000187f9, rsp 00007fffcdaef9a0, rbp 00007fffcdaef9a0  
  rsi 00007fffcdaef9c4, rdi 00002ab2dd77e020, r8  00000000ffffffff  
  r9  0000000000000000, r10 0000000000000022, r11 0000000000000246  
  r12 0000000000000001, r13 00007fffcdaefae0, r14 0000000000000000  
  r15 0000000000000000  
 /lib64/libpthread.so.0 [0x2ab2dd1ebc10]  
 ./y(init_+0x1f) [0x4081bf]  
 ./y(MAIN_+0x9b) [0x407ffb]  
 ./y(main+0x40) [0x407f40]  
 /lib64/libc.so.6(__libc_start_main+0xf4) [0x2ab2dd468154]  
 ./y [0x407e69]  



There are too many compiler flags to remember all of their options.  You can 
get help in several places: 

> man pgfortran

> pgfortran -fast -help – gives help on -fast 

Full PDF manuals are online in (e.g) 

/opt/pgi/11.2.0/linux86-64/2011/doc 

Manuals are also available at: 

http://www.pgroup.com/resources/docs.htm 

What does this flag do? 



Optimization is as much a user exercise as it is a compiler exercise.  To see 
what the compiler thinks of your code, compile using the –Minfo flag. 

> pgfortran -fast -Minfo=ccff foo.f -o foo

Use the information generated by –Minfo to help identify coding issues and 
locate places where code can be improved so the compiler can do an optimal 
job on it. 

> pgfortran -Minfo -help   

What exactly is being optimized? 
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> ftn -fast -Mipa=fast –Minfo=ccff -S graphRoutines.f90

localmove:
   334, Loop unrolled 1 times (completely unrolled)
   343, Loop unrolled 2 times (completely unrolled)
   358, Generating vector sse code for inner loop
   364, Generating vector sse code for inner loop
           Generating vector sse code for inner loop
   392, Generating vector sse code for inner loop
   423, Generating vector sse code for inner loop

Use –Minfo to see which loops vectorize 

Use –Mneginfo to see why things don’t vectorize 



The –fast flag is the 90/90 solution for code optimization.  That is, it 
achieves about 90% of the possible performance for about 90% of the codes. 

That means there are some additional areas that can be explored. 

Interprocedural analysis can be helpful for C codes and Fortran codes 
without interface blocks.  (Interface blocks are to the language specification 
what IPA is to the compiler) 

> ftn -fast -Minfo -Mipa=fast,inline foo.f -o foo

***If compiling and linking are done in separate steps, you must be sure to 
pass the IPA flag to the linker too.   

IPA involves an additional pass of the compiler. 

Additional compiler optimizations 



The suggested usage for IPA is to apply –Mipa=fast globally 

The –Mipa flag has a large number of options that may be helpful in 
certain circumstances.  These options are generally best applied to a 
specific subroutine to address a specific issue. 

A couple of the more interesting flags include: 

-Mipa=libopt    This allows recompiling and optimization of routines from 
libraries using IPA information.  If you make extensive use of libraries in 
your code, try compiling those libraries with –Mipa=fast so that you have 
the option of using IPA when you link your application to that library 

-Mipa=safeall  This declares that all unknown procedures are safe. 

Additional IPA optimizations 



Several memory management options are available and may be beneficial 
depending on how your code accesses memory.  Smartalloc tends to do a 
better job managing memory then standard Unix malloc. 

Smartalloc can make use of “big pages”.  Using big pages helps to 
minimize the number to TLB misses.  This option tends to be helpful for 
codes that do a big initial allocate and then manage their own memory. 

> ftn -fast -Minfo -Mipa=fast,inline -Msmartalloc=huge foo.f -o foo

***-Msmartalloc must be used to compile main, and also to link the 
program 

Additional compiler optimizations 



Inlining can have a significant impact on application performance.  It’s 
most dramatic effects tend to be on C++ codes which have many many 
small functions. 

Inlining can be done at several different points in the compilation. 

-Minline/autoinline     - during the regular compilation phase 

-Mipa=inline               - during the recompile for IPA 

Inline libraries             - created during the “make” process 

Additional compiler optimizations 



The auto inliner is for C/C++ only.  This enables inlining functios 
with the inline attribute.  The suboptions control how the auto inliner 
operates. 

-M[no]autoinline 
              Enable inlining of functions with the inline attribute. 
              -Mautoinline is implied with the -fast switch.  The options are: 

              levels:n  Inline up to n levels of function calls; the default 
                        is to inline up to 10 levels. 

              maxsize:n Only inline functions with a size of n or less.  The 
                        size roughly corresponds to the number of statements 
                        in the function, though the correspondence is not 
                        direct.  The default is to inline functions with a 
                        size of 100 or less. 

              totalsize:n 
                        Stop inlining when this function reaches a size of n. 
                        The default is to stop inlining when a size of 8000 
                        has been reached. 



Use of -Minline/-Mextract to create an inline library.  This works for 
all languages(C/C++/FORTRAN).  To create an inline library with  
-Mextract do the following: 
pgfortran -Mextract=lib:libfloat.il -c add.f90
pgfortran -Mextract=lib:libfloat.il -c sub.f90
pgfortran -Mextract=lib:libfloat.il -c mul.f90
pgfortran -Mextract=lib:libfloat.il -c div.f90

This creates an inline library name libfloat.il which can be used  
during compliation as follows: 
pgf90 -fast -Minline=libfloat.il -c -Minfo -Mneginfo 
       driver.f90

Creating and Using Inline Libraries 



The -Minfo messages for this compile are: 

test:
     14, Generated an alternate loop for the loop
         Generated vector sse code for the loop
     21, Generated an alternate loop for the loop
         Generated vector sse code for the loop
     22, add inlined, size=2, file add.f90 (2)
     33, Generated an alternate loop for the loop
         Generated vector sse code for the loop
     34, sub inlined, size=2, file sub.f90 (2)
     45, Generated an alternate loop for the loop
         Generated vector sse code for the loop
     46, mul inlined, size=2, file mul.f90 (2)
     57, Generated an alternate loop for the loop
         Generated vector sse code for the loop
     58, div inlined, size=2, file div.f90 (2)

As a result of inlining the functions add, sub, mul, and div the 
compiler was then able to vectorize the loops that contained those 
calls. 



Use of -Mipa=inline to inline functions/subroutines. This works for all 
languages(C/C++/FORTRAN).  Create the library using the -Mipa=inline 
option as follows: 
pgfortran -Mipa=fast,inline -Minfo -Mneginfo -c add.f90
pgfortran -Mipa=fast,inline -Minfo -Mneginfo -c sub.f90
pgfortran -Mipa=fast,inline -Minfo -Mneginfo -c mul.f90
pgfortran -Mipa=fast,inline -Minfo -Mneginfo -c div.f90

ar cr libfloat.a add.o sub.o mul.o div.o

This creates a library named libfloat.a which can be used during compliation 
as follows(need to use the libinline suboption): 
pgf90 -fast -Mipa=fast,inline,libinline -c -Minfo -Mneginfo 
       driver.f90
pgf90 -fast -Mipa=fast,inline,libinline -o d driver.o 
       libfloat.a



The -Minfo messages for this compile are: 
test:
     14, Generated an alternate loop for the loop
         Generated vector sse code for the loop
     21, Loop not vectorized/parallelized: contains call
     33, Loop not vectorized/parallelized: contains call
     45, Loop not vectorized/parallelized: contains call
     57, Loop not vectorized/parallelized: contains call
IPA: Recompiling driver.o: stale object file
test:
      0, Pointer c is only set via allocate statements
         Pointer b is only set via allocate statements
         Pointer a is only set via allocate statements
         Function add does not write to any of its arguments
         Function add does not reallocate any of its arguments
         Function add does not reassociate any of its pointer arguments
         Function add does not reallocate any global variables
         Function add does not reassociate any global pointers
         Function add does not read any global (common/module) variables
         Function add does not write any global (common/module) variables
         Function sub does not write to any of its arguments
         Function sub does not reallocate any of its arguments
         Function sub does not reassociate any of its pointer arguments
         Function sub does not reallocate any global variables
         Function sub does not reassociate any global pointers
         Function sub does not read any global (common/module) variables
         Function sub does not write any global (common/module) variables
         Function mul does not write to any of its arguments



There are a number of compiler options that offer the possibility of 
significant performance improvement at the expense of accuracy. If you are 
having numerical issues, you might tighten some restrictions. 

-Kieee  – floating point strictly conforms to IEEE 754 standard.  (off by default) 

-Ktrap – turns on the behavior of the processor when exceptions occur 

-Mdaz – mode to treat IEEE denormalized input numbers as zero 

-Mflushz – set SSE to flush-to-zero mode (on with –fast) 

-Mfprelaxed -  perform certain floating point operations using relaxed precision when it improves 
the speed.  (This is the default mode on most other vendor’s compilers) 

Compiler optimizations and accuracy 



There are three general techniques for using more then one core for a 
computation.  Of course, on large XT5 machines, all codes implement 
parallelism through MPI. 

While most codes are MPI everywhere, some codes benefit by using the 
shared memory on the node through either automagic parallelizing by the 
compiler or/and OpenMP.  OpenMP compilation is invoked with the –mp 
flag, automagic parallelization with the –Mconcur flag. 

Environment variables which can effect OpenMP performance include: 

OMP_SCHEDULE – can be static, dynamic, guided or auto 

OMP_NUM_THREADS – specifies the number of threads to use 

OMP_STACKSIZE – override the default stack size for new threads. 

Using more then one core 
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Explicit Function Inlining 
–Minline[=[lib:]<inlib> | [name:]<func> | except:<func> | 
                 size:<n> | levels:<n>] 

[lib:]<inlib>   Inline extracted functions from inlib 

[name:]<func>  Inline function func 

except:<func>   Do not inline function func 

size:<n>   Inline only functions smaller than n  
   statements (approximate) 

levels:<n>   Inline n levels of functions 
For C++ Codes, PGI Recommends IPA-based 

inlining or –Minline=levels:10! 
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SMP Parallelization 
   –Mconcur for auto-parallelization on multi-core 

  Compiler strives for parallel outer loops, vector SSE inner loops 

  –Mconcur=innermost forces a vector/parallel innermost loop 

  –Mconcur=cncall enables parallelization of loops with calls 

•   –mp to enable OpenMP parallel programming model 

  OpenMP programs compiled w/out –mp “just work” 

  Starting in 7.0, two options for idle policy 

   –Mconcur and –mp can be used together! 
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Miscellaneous Optimizations (1) 

   –Mfprelaxed – single-precision sqrt, rsqrt, div performed 
    using reduced-precision reciprocal approximation 

   –lacml and –lacml_mp – link in the AMD Core Math Library 

   –Mprefetch=d:<p>,n:<q> – control prefetching distance,  
    max number of prefetch instructions per loop 

   –tp k8-32 – can result in big performance win on some  
    C/C++ codes that don’t require > 2GB addressing;  
    pointer and long data become 32-bits 



Fortran 2003 Features in Current PGI
 Compiler Release  

IEEE_EXCEPTIONS module  IEEE_ARITHMETIC module  Allocatable Array
 Extensions 

ISO_C_Binding   c_f_pointer   c_f_procpointer  
c_associated   Enumerators   Procedure Pointers 
Interface procedure  Pass and Nopass Attribute  allocatable scalars  
move_alloc()   Pointer Reshaping  Square brackets   
volatile attribute and stmt  IMPORT statement  iso_fortran_env module  
Access to environment  Length of names and statements 
Optional Kind to Intrinsics  Asynchronous I/O'  Wait Statement    
PENDING specifier for INQUIRE    Access = 'stream’ 
POS specifier for INQUIRE  IOSTAT kind in all i/o stmts SIZE kind in read/write stmts 
 Allow NAMELIST w/internal file     IEEE_ARITHMETIC large arrays  
Classes   Type Extension(not polymorphic)  polymorphic entities  
 type uses CONTAINS declaration    Inheritance  
EXTENDS_TYPE_OF intrinsic SAME_TYPE_AS intrinsic  Typed allocation 



Fortran 2003 Features in Current PGI
 Compiler Release  

•   READ blank specifier  READ pad specifier  WRITE delim specifer   
•  NEW_LINE intrinsic  IS_IOSTAT_END intrinsic  IS_IOSTAT_EOR intrinsic  
•  SYSTEM_CLOCK COUNT_RATE is real   abstract interfaces  
•  Type-bound procedures  PASS attribute   NOPASS attribute 

•  NON_OVERRIDABLE attribute  PRIVATE and PUBLIC attributes   
•  PRIVATE statement for type bound procedures  deferred type-bound

 procedures 
•  ABSTRACT types     i/o keyword encoding   
•  Decimal comma for i/o, dc, dp  ASYNCHRONOUS attribute and stmt   
•  IEEE_FEATURES module   Max, Min take character    
•  errmsg on allocate/deallocate  Mixed component accessibility  
•  Sourced allocation (non-polymorphic)  Associate Construct   
•  Sourced allocation (polymorphic types)  



Fortran 2003 Remaining Features  

•  deferred-character-length     11.0  
•  generic & derived type the same    11.0 
•  sourced allocation (deferred character)   11.0 
•  PROTECTED attribute and stmt    11.0 
•  stop stmt warns about FP exc.    11.0  
•  rename user-defined operators    11.0 
•  array constructor syntax     11.0 
•  structure constructors     11.0 
•  SELECTED_CHAR_KIND intrinsic    11.0 

Compiler Release 



Fortran 2003 Object Oriented Features  

•  generic type-bound procedures      11.0 
•  select type construct       11.0 
•  unlimited polymorphic entities      11.0  
•  typed allocation for unlimited polymorphic entities    11.0  
•  sourced allocation for unlimited polymorphic entities   11.0 
•   select type construct for unlimited polymorphic entities   11.0 
•  deferred type parameters (requires MRC 15.2 & MRC 16.2.1)  11.8 
•  sourced allocation (ploymorphic source type with 

allocatable members       11.4  
•  parameterized derived types (MRC 16.2.1)    11.7  
•  final procedures       11.5  

Compiler Release 



Fortran 2003 I/O Features  

•  i/o of inf and nan  (fs#3962)     11.0  
•  round i/o specifier, ru,rd,etc.  (writes only)    11.0 
•  non-default derived type I/O     11.x 
•  non-default derived type I/O (type-bound procedures)  11.x  
•  recursive I/O w/external file     11.x  
•  recursive I/O w/internal file     11.x  
•  SIGN= Specifier      11.0  
•  NEXTREC, NUMBER, RECL, SIZE kind    11.0  
•  DECIMAL in INQUIRE stmt     11.0 
•  F2003 NAMELIST group entities    11.0  

Compiler Release 



AVX Support in 11.0 

•  The next generation of processors from both Intel and AMD will
 support AVX instructions. 

•  AVX doubles the width of the floating point registers to 256 bits
 and adds 3 operand instructions resulting in more then a 2X
 decrease in assembly language instructions in performance
 critical sections of code 

•  AVX are vector instructions where one instruction operates on 8
 sp, or 4 dp words at the same time, effectively doubling the
 performance of the CPU. 

•  Codes should be compiled with –fast  for vectorization and –Minfo
 to get compiler feedback 

•  PGI compiled codes can made use of the Intel AVX simulator 



 Will track NVIDIA’s definition and evolution of the 
CUDA C language for GPUs moving forward 

  Implementation will proceed in phases 
  Phase 1 prototype demonstration at SC10 in New Orleans (November) 
  Phase 2 first production release in Q2 2011 with most CUDA C 

functionality; not a performance release 
  Phase 3 performance release in Q4 2011 leveraging multi-core and 

SSE/AVX to implement low-overhead native parallel/SIMD execution 

 Will eventually support execution of Device kernels 
on NVIDIA CUDA-enabled GPUs as well 

 PGI Unified Binary technology will enable one binary 
that uses NVIDIA GPUs when present or defaults to 
multi-core x86 if no GPU is present 



Multicore + SSE/AVX Massively Parallel 



…





 Process CUDA C as a native parallel programming 
language for multi-core x86 

  Inline Device kernel functions, translate chevron 
syntax to parallel/vector loops, use multiple cores and 
SSE/AVX  instructions 

 Execute each CUDA thread block using a single host 
core, eliminate synchronization where possible 

 Host Code:  all PGI optimizations for Intel/AMD host 
code will be supported 

 Performance Goal:  Well-structured CUDA C for multi-
core x86 programs approach the efficiency of the same 
algorithm written in OpenMP 



  NVIDIA TESLA C1060/C2050 
  Lots of available performance ~1 TFlops peak SP 
  Programming is a challenge 
  Getting high performance is lots of work 

  NVIDIA CUDA programming model and C for 
CUDA simplify GPGPU programming 
•  Much easier than OpenGL/DirectX, still challenging 

  PGI’s CUDA Fortran provides an a Fortran 
based analog to CUDA C 

  PGI’s Accelerator Directive compilers for C and 
Fortran provide a higher level, OpenMP style of 
programming NVIDIA GPU’s. 



AMD “Magny-Cours” 



Emerging Cluster Node Architecture 
Commodity Multicore x86 + Commodity Manycore GPUs 

4 – 48 CPU Cores 240 – 1920 GPU/Accelerator Cores 



Abstracted x64+Fermi Architecture 

1-57 



CUDA Fortran VADD Host Code 

 subroutine vadd( A, B, C ) 
  use cudafor 
  use kmod 
  real(4), dimension(:) :: A, B 
  real(4), pinned, dimension(:) :: C 
  real(4), device, allocatable:: Ad(:), Bd(:), Cd(:) 
  integer :: N 
  N = size( A, 1 ) 
  allocate( Ad(N), Bd(N), Cd(N) ) 
  Ad = A(1:N) 
  Bd = B(1:N) 
  call vaddkernel<<<(N+31)/32,32>>>( Ad, Bd, Cd, N ) 
  C(1:N) = Cd 
  deallocate( Ad, Bd, Cd ) 
 end subroutine 

58 



CUDA Fortran VADD Device Code 

module kmod 
 use cudafor 
contains 
 attributes(global) subroutine vaddkernel(A,B,C,N) 
  real(4), device :: A(N), B(N), C(N) 
  integer, value :: N 
  integer :: i 
  i = (blockidx%x-1)*32 + threadidx%x 
  if( i <= N ) C(i) = A(i) + B(I) 
 end subroutine 
end module 

59 



3 Aspects of GPU Programming 

1.  Split code between Host and GPU 
  CUDA and OpenCL – function level, done manually by the programmer 
  Modern Compilers – can do this just as well as you can, and a lot faster, and 

enable offloading of regions within functions 

2.  Manage data allocation/movement between Host and Device 
  CUDA and OpenCL – do this manually with API calls, one or more per argument 

to the device kernel, host code nearly unrecognizable compared to original 
  Modern Compilers – can do this almost as well you can, user-driven tuning is 

required, but can and should be quick and easy 

3.  Tune Device Kernels 
  CUDA and OpenCL – this step is both time-consuming and difficult;  must 

optimize grid/thread geometry, optimize memory placement/accesses, etc 
  Modern Compilers – can help a little here and make the code portable, but this 

step is probably always going to be hard 



Explicit programming (CUDA) vs. 
implicit programming (directives) 

CUDA:  
   + Good performance with hand tuned kernels 
   + Incremental porting to GPU 
   - not portable to non-CUDA platforms 
   - requires maintaining two sets of code 
Directives: 
   + Good performance possible 
   + Incremental porting to GPU 
   + portable to non-CUDA platforms including X64 
   + requires only a single code source 
    - Obscurity in what the compiler is actually doing 
    - “Best practices” not clearly established – more data 
       from user, vendor, and platform needed 



PGI Accelerator Programming Model 

  Built on lessons from 30 years of experience with vector machines 
and 20 years of experience with SMP programming 

  Directives to offload compute kernels to a GPU, manage data 
movement between host and GPU, map loop parallelism onto a GPU 

  Fortran 2003 and C99 today, eventually C++ 

  Programs remain 100% standard compliant and portable to other 
compilers and HW 

  Incremental porting/tuning of applications to x64+GPU 

  Designed to enable development of applications that are performance 
portable to multiple types of accelerators 



Basic C code - Matrix Multiply 
for x64 Single-core 

void 
computeMM(float C[][WB], float [][WA], float B[][WB], int hA, int wA, int wB) 
{ 
    int i, j, k; 

    for (i = 0; i < hA; ++i) { 
        for (j = 0; j < wB; ++j) { 
            C[i][j] = 0.0; 
        } 
    } 
    for (i = 0; i < hA; ++i) { 
        for (k = 0; k < wA; ++k) { 
            for (j = 0; j < wB; ++j) { 
               C[i][j] =+= A[i][k]*B[k][j]; 
            } 
        } 
    } 
} 



GPU Code 

Host Code 
NVIDIA CUDA C cudaMalloc(&A,bytes); 

cudaMemcpy(A,data,bytes); 
... 
sgemm<<<dim3(m/16,n/16),dim3(16,16)>>> 

 (A,la,B,lb,C,lc); 
... 

__global__ void sgemm( float *A, int la, 
    float* B, int lb, float* C, int lc ) 
{ 
    int tx=threadIdx.x, ty=threadIdx.y; 
    int i = blockIdx.x*16+tx; 
    int j = blockIdx.y*16+ty; 
    float Cij = C[i+j*lc]; 
    __shared__ float Ab[16][16]; 
    __shared__ float Bb[16][16]; 
    for(int kb=0; kb<lc; kb+=16){ 
        Ab[tx][ty] = A[i+la*(kb+ty)]; 
        Bb[tx][ty] = B[kb+tx+lb*(j)]; 
        __syncthreads(); 
        for(int k=0; k<16; ++k) 
            Cij += Ab[tx][k]*Bb[k][ty]; 
        __syncthreads(); 
    } 
    C[i+j*lc] = Cij; 
} 



PGI Accelerator 
Program Execution Model 

  Host 
  executes most of the program 

  allocates accelerator memory 

  initiates data copy from host memory to accelerator 

  sends kernel code to accelerator 

  queues kernels for execution on accelerator 

  waits for kernel completion 

  initiates data copy from accelerator to host memory 

  deallocates accelerator memory 

  Accelerator 
  executes kernels, one after another 

  concurrently, may transfer data between host and accelerator 



Accelerating an Application 

•  Given that the app
 meets  the
 constraints
 discussed, simply
 surround region to be
 accelerated with
 directives: 

•  Compile for GPU 

Produces accelerated
 kernels with correct
 data movement 

Compiler feedback
 important for tuning 

!$acc region 
  <code loops> 
!$acc end region 

pgfortran –fast 
-Minfo=accel 
-ta=nvidia 



   PGI 2010 automatically generates  
 code for NVIDIA GPUs 

   Generated code takes into account  
 corner cases 

   Block dimension chosen by the  
 compiler is 16x16 threads 

   Each thread of a given block computes  
 one point in ‘C’ output matrix 

   No use of shared memory for A & B  
 accesses 

   Code needs to structured to enable  
 « cache » accesses to A & B 

   Single binary for both optimized  
 versions for multicore and GPU 

PGI Directive-based Matrix 
Multiply for x64+GPU 

void 
computeMM(float C[][WB], float [][WA],  
    float B[][WB], int hA, 
    int wA, int wB) 
{ 
    int i, j, k; 

#pragma acc region 
{ 
    for (i = 0; i < hA; ++i) { 
        for (j = 0; j < wB; ++j) { 
            C[i][j] = 0.0; 
        } 
        for (k = 0; k < wA; ++k) { 
            for (j = 0; j < wB; ++j) { 
               C[i][j]+=A[i][k]*B[k][j]; 
            } 
        } 
    } 
} 
} 

C code 



PGI Accelerator 
Compilers 

void saxpy (float a,  
float *restrict x,  
float *restrict y, int n){ 
#pragma acc region 
{ 
    for (int i=1; i<n; i++)    
        x[i] = a*x[i] + y[i]; 
} 
} 

saxpy:  
        … 
        movl    (%rbx), %eax 
        movl    %eax, -4(%rbp) 
        call    __pg_cu_init 
        . . . 
        call    __pg_cu_alloc 
        … 
        call    __pg_cu_uploadp 
        … 
        call    __pg_cu_paramset 
        … 
        call    __pg_cu_launch 

        … 
        Call    __pg_cu_downloadp 
        … 

Host x86 Code 
GPU/Accelerator Code  

static __constant__ struct{ 
    int tc1; 
    float* _y; 
    float* _x; 
    float _a; 
    }a2; 
extern "C" __global__ void 
pgi_kernel_2() { 
  int i1, i1s, ibx, itx; 
  ibx = blockIdx.x; 
  itx = threadIdx.x; 
  for( i1s = ibx*256; i1s < a2.tc1; i1s += gridDim.x*256 ){ 

    i1 = itx + i1s; 
    if( i1 < a2.tc1 ){ 
      a2._x[i1] = (a2._y[i1]+(a2._x[i1]*a2._a)); 
    } 
  } 
} 

+ 

Unified HPC 
Application 

compile 

link 

execute … with no change to existing makefiles, scripts,  
programming environment, etc 

pgcc –ta=nvidia 



Refinements:  Loop Schedules 
       Accelerator kernel generated 

     26, #pragma acc for parallel, vector(16) 
     27, #pragma acc for parallel, vector(16) 

  vector loops correspond to threadidx indices 

  parallel loops correspond to blockidx indices 

  this schedule has a CUDA schedule: 

<<< dim3(ceil(N/16),ceil(M/16)),dim3(16,16) >>> 

 Compiler strip-mines to protect against very long  
loop limits, generates clean-up code for arbitrary loop
 bounds, etc 

 Syntax supports any legal CUDA schedule 



Refinements:  Data Motion 

      !$acc region copyin(a(1:m,1:n)), copyout r 
              do j = 2,n-1             ! Update interior points 

                      do i = 2,m-1 
                      r(i,j) = a(i,j) * 2.0 

                       enddo 
              enddo 
        !$acc end region 

  copyin changes default copyin procedure 

  copyout changes default copyout procedure 

 By default, compiler moves only data that is used  

 E.g. for computing on non-halo regions, it is more
 efficient to move entire array rather then have the
 compiler generate a move for each column/row 



Refinements:  Leaving Data on GPU 

          Subroutine magma (A, B) 
        real(4), dimension(:,:) :: A, B 

      !$acc reflected (A,B) 

  reflected is a new directive in PGI 11.0  

  reflected requires visibility of the caller (module or
 interface block) 

  Instructs the compiler that the data is already on the
 GPU 

 Starts to help programmer work around the “no stack
 pointer” issue 

 Replaces trying to get the compiler to inline called
 routines 



% pgfortran -fast -ta=nvidia –Minfo=accel mm.f 
... 
  62, Loop is parallelizable 
  64, Loop carried dependence of 'C' prevents parallelization 
      Loop carried backward dependence of 'C' prevents vectorization 
  66, Loop is parallelizable 
      Accelerator kernel generated 
      62, #pragma acc for parallel, vector(16) /* blockIdx.y threadIdx.y */ 
      64, #pragma acc for seq(16) 
          Cached references to size [16x16] block of 'A' 
          Cached references to size [16x16] block of 'B' 
      66, #pragma acc for parallel, vector(16) /* blockIdx.x threadIdx.x */ 
          Using register for 'C' 
          CC 1.3 : 27 registers; 2264 shared, 24 constant,  
                   0 local memory bytes; 50% occupancy 
... 

Compiler-to-User Feedback 



Optional Region Clauses for Tuning 
Data Allocation and Movement 

See www.pgroup.com/accelerate for a complete specification 
of the PGI Accelerator programming model and directives 

Clause Scope 
if (cond) region 
copy (list) region, declaration 
copyin (list) region, declaration 
copyout (list) region, declaration 
local (list) region, declaration 
mirror (list) region, declaration (Fortran) 
reflected (list) declaration (Fortran) 



Optional Loop Directive Clauses for 
Tuning Kernel Schedules 

Clause Scope 

host [(width)] loop 
parallel [(width)] loop 
seq [(width)] loop 
vector [(width)] loop 

private (list) loop 
kernel loop  
unroll (width) loop 
cache (list) loop 

See www.pgroup.com/accelerate for a complete specification 
of the PGI Accelerator programming model and directives 



      change = tolerance + 1.0 
!$acc data region local(newa(1:m,1:n)) & 
                  copy(a(1:m,1:n)) 
      do while(change > tolerance) 
         change = 0 
!$acc region 
         do i = 2, m-1 
         do j = 2, n-1 
            newa(i,j) = w0 * a(i,j) + & 
                        w1 * (a(i-1,j) + a(i,j-1) + & 
                              a(i+1,j) + a(i,j+1)) + & 
                        w2 * (a(i-1,j-1) + a(i-1,j+1) + &  
                              a(i+1,j-1) + a(i+1,j+1)) 
            change = max(change,abs(newa(i,j)-a(i,j))) 
         enddo 
         enddo 
         a(2:m-1,2:n-1) = newa(2:m-1,2:n-1) 
!$acc end region 
      enddo 
!$acc end data region 

Device-Resident Data Example 



PGI Accelerator vs CUDA 

  The PGI Accelerator programming model is a high-level implicit 
programming model for x64+GPU systems, similar to OpenMP 
for Multi-core x64: 

  Offload compute-intensive loops and code regions using simple 
compiler directives  

  Directives are Fortran comments and C pragmas, programs 
remain 100% standard-compliant and portable  

  Makes GPGPU programming and optimization incremental and 
accessible to application domain experts 

  Supported in both the PGI F2003 and PGCC C99 compilers  



Reference Materials 

  PGI Accelerator programming model – supported for x64+NVIDIA 
targets in the PGI Fortran 95/03 and C99 compilers 
  http://www.pgroup.com/lit/whitepapers/pgi_accel_prog_model_1.3.pdf 

  CUDA Fortran – supported on NVIDIA GPUs in PGI Fortran 95/03 
compiler 
  http://www.pgroup.com/lit/whitepapers/pgicudaforug.pdf 

  Understanding the CUDA Data Parallel Threading Model 
  http://www.pgroup.com/lit/articles/insider/v2n1a5.htm 
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PGCC  
+  

Vectorization  
+  

IPA  
+ 

OpenMP 

i-loop parallelized 
+ 

k-loop vectorized 

Parallel C code - Matrix Multiply  
for a Multi-core x64 Host 

Parallel/Vector 
SSE code on 
Multi-core x64 
SMP node 

void 
computeMM(float C[][WB], float [][WA],  
    float B[][WB], int hA, int wA, 
    int wB) 
{ 
    int i, j, k; 
#pragma omp parallel 
{ 
#pragma omp for 
   for (i = 0; i < hA; ++i) { 
      for (j = 0; j < wB; ++j) { 
         C[i][j] = 0.0; 
      } 
   } 
#pragma omp for 
   for (i = 0; i < hA; ++i) { 
      for (k = 0; k < wA; ++k) { 
         for (j = 0; j < wB; ++j) { 
            C[i][j]+=A[i][k]*B[k][j]; 
         } 
      } 
   } 
} 
} 

C code 



Basic CUDA C Matrix Multiply Kernel  
for an NVIDIA GPU 

WA 

WB WA 

HA 

WB 

HA 

Block size 

   Here block size is equal to 64 
   Each thread of a given block computes one  

 point in ‘C’ output matrix 
   Each thread of a given block reads same line  

 of ‘A’ matrix 
   Each thread of a given block read a different  

 column from ‘B’ matrix 

CUDA-C code 

extern "C" __global__ void 
mmkernel(float* A,float* B, float* C, 

          int wA,int wB) 
{ 

     int i = blockIdx.y; 
    int j = blockIdx.x*64+threadIdx.x; 

    float sum = 0.0; 
    for( int k = 0; k < wA; ++k ) 
      sum += A[wA*i+k] * B[k*wB+j]; 
    C[i*wB+j] = sum; 
} 



   Here thread block size is equal to 128 
   Each thread of a given block computes 

 2 points in ‘C’ output matrix 
   Computation performed on 16x16 data   

 tiles of elements from ‘A’ and ‘B ’ 
   Each thread of a given block reads 2  

 elements of ‘A’ and 2 elements of ‘B’  
 and stores them in shared memory 

   Each thread of a given block waits for  
 other threads of the same block to  
 complete caching of ‘A’  and ‘B’ into   
 shared memory before starting any  
 computation 

   The j-loop has been unrolled by 2  
 to take advantage of re-using same  
 ‘at’ element for different computations 

   The inner k-loops will be completely 
  unrolled (16x) by nvcc 

   Each thread of a given block waits for  
 other threads to complete computation  
 before caching next 16x16 tiles of ‘A’  
 and ‘B’ matrices 

Optimized CUDA-C code 

extern "C" __global__ void   
c_mmul_kernel( float* c, float* a, float* b, 
                int WA, int WB, int WC ) 
{      
    int tx = threadIdx.x; 
    int ty = threadIdx.y; 

    int is = blockIdx.x*16, i = is + tx; 
    int js = blockIdx.y*16, j = js + ty; 
    __shared__ float at[16][16], bt[16][16]; 

    float sum0 = 0.0, sum1 = 0.0; 
    for (int ks = 0; ks < WA; ks += 16){ 
        at[ty][tx]   = a[ks+tx+WA*(ty+js)]; 
        at[ty+8][tx] = a[ks+tx+WA*(ty+js+8)]; 
        bt[ty][tx]   = b[is+tx+WB*(ty+ks)] ; 
        bt[ty+8][tx] = b[is+tx+WB*(ty+ks+8)] ; 
        __syncthreads(); 
        for (int k = 0; k < 16; ++k) 
            sum0 += at[ty][k]*bt[k][tx] ; 
        for (int k = 0; k < 16; ++k) 
            sum1 += at[ty+8][k]*bt[k][tx] ; 
        __syncthreads(); 
    }  
    c[i+WB*j] = sum0; 
    c[i+WB*(j+8)] = sum1; 
} 



WA 

WB 
WA 

HA 

WB 

HA 

Optimized CUDA C Matrix
 Multiply Kernel principle 

  Execution of one block of threads 
  Simplified example with block size equals to 8x4 instead of 16x8 
  What about corner cases, i.e. matrix size not multiple of block dimension? 



Host-side CUDA C Matrix Multiply 
GPU Control Code 

cudaMalloc( &ap, memsizeA ); 
cudaMalloc( &bp, memsizeB ); 
cudaMalloc( &cp, memsizeC ); 

cudaMemcpy( ap, a, memsizeA, cudaMemcpyHostToDevice ); 
cudaMemcpy( bp, b, memsizeB, cudaMemcpyHostToDevice ); 
cudaMemcpy( cp, c, memsizeC, cudaMemcpyHostToDevice ); 

dim3 threads( 16, 8 ); 
dim3 blocks( hA/16, wB/16 ); 
c_mmul_kernel <<<blocks,threads>>>(ap, bp, cp,  
                                   wA, wB, wC); 

cudaMemcpy( C, cp, memsizeC, cudaMemcpyDeviceToHost ); 

cudaFree( ap ); 
cudaFree( bp ); 
cudaFree( cp ); 



Compilers & Programming Models Must Evolve  
for Each New Generation of HPC Hardware 

Expect 20M Core systems in the Next Few Years 

HPC System 
Processor 

Cores 

MPI 

MPI+OMP 

MPI+OMP+ACC 



  NVIDIA TESLA C1060 and C2050 (Fermi) 
  Lots of available performance 1 - 2 TFlops peak SP 
  Programming is a challenge 
  Getting high performance is lots of work 

  NVIDIA CUDA programming model simplifies 
GPGPU programming 
  CUDA C much easier than OpenGL, still challenging 
  PGI CUDA Fortran provides a Fortran solution 

  A PGI Goal:   do for GPU programming what 
OpenMP did for Posix Threads, make it easily 
approachable by application domain experts 



PGI Directive-based Matrix 
Multiply for Multi-core x64+GPU 

void 
computeMM(float C[][WB], float [][WA],  
    float B[][WB], int hA, 
    int wA, int wB) 
{ 
    int i, j, k; 

#pragma acc region 
#pragma omp parallel 
{ 
    for (i = 0; i < hA; ++i) { 
        for (j = 0; j < wB; ++j) { 
            C[i][j] = 0.0; 
        } 
        for (k = 0; k < wA; ++k) { 
            for (j = 0; j < wB; ++j) { 
               C[i][j]+=A[i][k]*B[k][j]; 
            } 
        } 
    } 
} 
} 

C code 

Parallel/Vector 
SSE code on 
Multi-core x64 
SMP node 

Autoparallelized 
Multi-Dimension 
code on GPU void 

computeMM(float C[][WB], float [][WA],  
    float B[][WB], int hA, int wA, 
    int wB) 
{ 
    int i, j, k; 
#pragma acc region 
#pragma omp parallel 
{ 
#pragma omp for 
   for (i = 0; i < hA; ++i) { 
      for (j = 0; j < wB; ++j) { 
         C[i][j] = 0.0; 
      } 
   } 
#pragma omp for 
   for (i = 0; i < hA; ++i) { 
      for (k = 0; k < wA; ++k) { 
         for (j = 0; j < wB; ++j) { 
            C[i][j]+=A[i][k]*B[k][j]; 
         } 
      } 
   } 
} 
} 

C code 

PGCC 
+ 

PGI Accelerator 
+ 

IPA 
+ 

Vectorization 
+ 

OpenMP 
+ 

PGI Unified Binary 



Maybe OpenCL is Easier? 



OpenCL code 
__kernel void 
matrixMul( __global float* C,  
           __global float* A, __global float* B,  

            __local float* As, __local float* Bs) 
{ 
    int bx = get_group_id(0); 
    int tx = get_local_id(0); 
    int by = get_group_id(1); 
    int ty = get_local_id(1); 
    int aEnd   = WA * BK_SZ * by + WA - 1; 
    int a = WA*BK_SZ*by ; 
    int b = BK_SZ * bx 
    float Csub = 0.0f; 

    for (;a <= aEnd; a += BK_SZ, b += BK_SZ*WB) { 
        As[tx + ty * BK_SZ]=A[a + WA * ty + tx]; 
        Bs[tx + ty * BK_SZ]=B[b + WB * ty + tx]; 
        barrier(CLK_LOCAL_MEM_FENCE); 
        for (int k = 0; k < BK_SZ; ++k) 
            Csub+=As[k+ty*BK_SZ]*Bs[tx+k*BK_SZ]; 
        barrier(CLK_LOCAL_MEM_FENCE); 
    } 

     int c = get_global_id(1)*get_global_size(0); 
     c = c + get_global_id(0); 

    C[c] = Csub; 

} 

   Here WorkGroup size is 16x16 
   Each WorkItem of a given WorkGroup 

 computes one point in ‘C’ output  
 matrix 

   Computation is performed in sub- 
 arrays of 16x16 elements of ‘A’ &’B’  
 matrices 

   Each WorkItem of a given WorkGroup  
 reads one element of ‘A’ & ‘B’ matrices  
 and stores them in local memory 

   Each WorkItem of a given WorkGroup  
 waits for other WorkItems of same  
 WorkGroup to complete caching of ‘A’  
 & ‘B’ matrices into local memory  
 before starting any computation 

   Each WorkItem of a given WorkGroup  
 waits for other WorkItems to complete  
 computation before caching next  
 16x16 sub-array of ‘A’ & ‘B’ matrices 

OpenCL Matrix
 Multiply Kernel

 for GPU 



OpenCL Host-side C Control Code 
Step1/3: Platform capability query, context creation, 

command queue creation 

ciErrNum = oclGetPlatformID(&cpPlatform); 
... 
ciErrNum = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, 0, NULL, &ciDeviceCount); 
... 
ciErrNum = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, ciDeviceCount, cdDevices, NULL); 
... 
cxGPUContext = clCreateContext(0, ciDeviceCount, cdDevices, NULL, NULL, &ciErrNum); 
... 

 ciErrNum |= clGetContextInfo(cxGPUContext, CL_CONTEXT_DEVICES, 0, NULL, &nDeviceBytes); 
ciDeviceCount = (cl_uint)nDeviceBytes/sizeof(cl_device_id); 

clGetContextInfo(cxGPUContext, CL_CONTEXT_DEVICES, 0, NULL, &szParmDataBytes); 

cdDevices = (cl_device_id*) malloc(szParmDataBytes); 

clGetContextInfo(cxGPUContext, CL_CONTEXT_DEVICES, szParmDataBytes, cdDevices, NULL); 

cl_device_id device = cdDevices[0]; 
commandQueue = clCreateCommandQueue(cxGPUContext, device, 0, &ciErrNum); 
... 



OpenCL Host-side C Control Code 
Step2/3: Program Building, Kernel creation, Resources 

allocation, argument passing, kernel enqueueing 

char *source = loadProgSource("matrixMul.cl", header, &program_length); 
... 
cpProgram = clCreateProgramWithSource(cxGPUContext, 1, (const char **)&source,  
                                                    &program_length, &ciErrNum); 
...  
ciErrNum = clBuildProgram(cpProgram, 0, NULL, "-cl-mad-enable", NULL, NULL); 
... 
multiplicationKernel = clCreateKernel(cpProgram, "matrixMul", &ciErrNum); 
... 
d_A = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR, 

        mem_size_A, &ciErrNum); 
d_B = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, 
                         mem_size_B, h_B_data, NULL); 
d_C = clCreateBuffer(cxGPUContext, CL_MEM_WRITE_ONLY,  mem_size_C, NULL,NULL); 

clSetKernelArg(multiplicationKernel, 0, sizeof(cl_mem), (void *) &d_C); 
clSetKernelArg(multiplicationKernel, 1, sizeof(cl_mem), (void *) &d_A); 
clSetKernelArg(multiplicationKernel, 2, sizeof(cl_mem), (void *) &d_B); 
clSetKernelArg(multiplicationKernel, 3, sizeof(float) * BK_SZ *BK_SZ, 0 ); 
clSetKernelArg(multiplicationKernel, 4, sizeof(float) * BK_SZ *BK_SZ, 0 ); 
    ... 
size_t localWS[] = {BLOCK_SIZE, BLOCK_SIZE}; 
size_t globalWS[] = {WC, HA}; 

clEnqueueNDRangeKernel(commandQueue, multiplicationKernel, 2, 0, globalWS, localWS, 
                       0, NULL, &GPUExecution);         



OpenCL Host-side C Control Code 
Step3/3: Kernel execution, results copy, resources 

deallocation 

… 
 clFinish(commandQueue); 

clEnqueueReadBuffer(commandQueue, d_C, CL_FALSE, 0, mem_size_C,  
                         h_C, 0, NULL, &GPUDone); 
clWaitForEvents(ciDeviceCount, GPUDone); 

clReleaseMemObject(d_A); 
clReleaseMemObject(d_C); 
clReleaseMemObject(d_B); 

 clReleaseEvent(GPUExecution); 
 clReleaseEvent(GPUDone); 

clReleaseKernel( multiplicationKernel ); 
clReleaseCommandQueue( commandQueue ); 
clReleaseProgram(cpProgram); 
ciErrNum = clReleaseContext(cxGPUContext); 
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